- 1. ECE 2140 Introduction to Digital Systems
- Course credit hours: 4
 Contact hours per week: 6 (lecture: 3, lab: 3)
 Credit category: Engineering Topics
- 3. Course Instructor: Dr. Mohamed Mahmoud
- 4. Textbook: *Digital Design: With an Introduction to the Verilog HDL, VHDL, and SystemVerilog, 6/e,* M.M.R. Mano and M.D. Ciletti, Pearson, 2018.

Digital Design, zyBooks (www.zybooks.com)

Supplemental materials: N/A

5. Course information:

Catalog	Analysis and design of digital systems. Number systems; Boolean
description	algebra; combinational and sequential logic circuits; state machine
	design; register-transfer level design; memory organization; and
	introduction to digital hardware design and field-programmable gate
	arrays.
Prerequisite(s)	C or better in MATH 1910 (MATH 1910 may be taken concurrently)
Course type	Required Course for EE, EE-Mech, EE-VE, CMPE

6. Course instructional outcomes:

Course		ABET
Outcome	Course Outcome (CO)	Student
No.		Outcome
CO1	Explain the difference between combinational and sequential	SO2
	networks.	
CO2	Determine, transform, and operate on integer and fractional numeric	SO2
	values in a given radix	
CO3	Describe the logical operation of and use of standard combinational	SO2
	and sequential logic blocks, including logic gates, CMOS logic	
	gates, decoders, encoders, multiplexers, demultiplexers,	
	adders/subtractors, comparators, and ALUs, registers, shift-	
	registers, counters.	
CO4	Apply the laws of Boolean algebra to the manipulation and	SO2
	simplification of algebraic expressions.	
CO5	Convert a logic function between various forms, including truth	SO2
	table, conjunctive and disjunctive normal forms, and simplified	
	Boolean equation forms.	
CO6	Use K-maps and other methods to obtain optimal sum-of-products	SO2
	or product-of-sums of a logic function.	

CO7	Analyze a given combinational logic schematic to determine its	SO2
	function.	
CO8	Given a word description of a logic function, design and document	SO2
	(via schematic, timing diagram, truth table, and a variety of Boolean	
	equation forms) a minimal logic implementation using standard	
	logic gates and components.	
CO9	Explain the operation and proper uses of standard sequential	SO2
	primitives and blocks: D and SR latches, D, T, SR, JK flip-flops,	
	registers, shift-registers, counters, and PLDs such as FPGA	
CO10	Determine temporal behavior given a sequential circuit schematic,	SO2
	finite state machine transition table, finite state machine diagram.	
CO11	Draw a state diagram of a given sequential function, and design the	SO2
	corresponding sequential circuit.	
CO12	Utilize a top-down modular design process to complete a medium	SO1,
	complexity combinational-sequential logic design project that meets	SO2,
	given certain design constraints.	SO3,
		SO5
CO13	Effectively use digital laboratory test equipment.	SO5,
		SO6
CO14	Measure the electronic and logical characteristics of logic devices.	SO6
CO15	Construct, design and test combinational and sequential logic	SO1,
	circuits using appropriate techniques.	SO2,
		SO5
CO16	Write technical reports.	SO3

ABET criterion 3 Student Outcomes addressed by this course:

SO No.	Student Outcome (SO)
SO1	An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering science and mathematics
SO2	An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
SO3	An ability to communicate effectively with a range of audiences.
SO5	An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
SO6	An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.

- 7. Course topics:
 - 1. Course Introduction (5%)
 - Number systems and codes (10%)
 Boolean algebra (15%)

- 4. Combinational logic design (20%)
- 5. Latches, flip-flops, analysis and design of sequential logic circuits (25%)
- 6. Project Design (5%)
- 7. Test and solutions (15%)
- 8. Introduction to digital test equipment (Lab; 10%)
- 9. Physical characteristics of digital logic: propagation delay, rise/fall times, voltage and current characteristics, noise margins, and unused pins (Lab; 10%)
- 10. Construction and testing of combinational logic circuits (Lab; 30%)
- 11. Design and test of combinational and sequential logic using logic gates, logical blocks, and modern PLDs, such as FPGAs (Lab; 25%)
- 12. Project implementation (Lab; 25%)

Program criteria (curriculum) addressed by this course:

- 1. ...engineering topics necessary to analyze and design complex electrical and electronic devices, software, and systems containing hardware and software components.
- 2. ...discrete mathematics.
- 8. Additional topics, assignments, or requirements for dual-level (4000/5000) course: N/A $\,$
- 9. Revision Date: 02/02/2022